Lists

What is a List?

A list in programming is a linearly ordered set of values, in which each value is referenced by an index value.

First, demo in Scratch ...
... storing user entered values in a list
... finding the largest element in a list

Motivation

Suppose a program was needed to read in a list of grades for a class of up to 25 students. If we had one variable for each of the students for holding their grade, we would end up with something like,
grade1 $=$ input('Enter grade of first student: ') grade2 $=$ input('Enter grade of second student: ') grade3 $=$ input('Enter grade of third student: ') etc.

Motivation (cont.)

If we wanted to calculate the average of the grades, we would have,

```
avg \(=\) (grade1 + grade2 + grade3 + grade4 + grade5 + grade6 +
``` grade23 + grade24 + grade25) / 25

This is rather inelegant. Also, it can become completely infeasible if there were to be 1,000 values entered, for example.

\section*{Usefulness of Lists}

With the use of lists, there can be ONE name given to the list as a whole, with each individual element of the list accessed by its position in the list,

\section*{grades}
\begin{tabular}{l|c|c|}
\hline \(\mathbf{0}\) & 86 & grades \([0] \rightarrow 86\) \\
\(\mathbf{1}\) & 92 & grades \([1] \rightarrow 92\) \\
\hline \(\mathbf{2}\) & 75 & grades \([2] \rightarrow 75\) \\
\hline \(\mathbf{3}\) & 83 & etc. \\
\hline \(\mathbf{4}\) & 97 & 97 \\
\hline \(\mathbf{5}\) & 71 & 71
\end{tabular}

\section*{Creating Lists}

In Python programming, a an empty list can be created as follows,
\[
\text { grades }=[] \quad--[]
\]

Items can be added to a list,
\begin{tabular}{ll}
grades.append(86) & \(--[86]\) \\
grades.append(92) & \(--[86,92]\) \\
grades.append(75) & \(--[86,92,75]\)
\end{tabular}

Can determine the length of a list, len(grades) \(\rightarrow 3\)
Can sort a list, sort(grades)
-- [75, 86, 92]

\section*{Using Lists}

Now if we wanted to calculate the average of the grades, we would have,
\[
\begin{aligned}
\operatorname{avg}= & (\text { grades }[0]+\operatorname{grades}[1]+\operatorname{grades}[2]+ \\
& \text { grades }[3]+\text { grades }[4]+\text { grades }[5]+
\end{aligned}
\]
\[
\text { grades[22] + grades[23] + grades[24] / } 25
\]

Which an improvement over the use of 25 individual variables.

Really?!

\section*{Lists and Iteration}

The REAL usefulness of lists is that the index value can be given as a variable, grades[i]

Where the item referenced depends on the CURRENT value of the index variable, in this case variable i .

\section*{Lists and Iteration (cont.)}

Thus, to add up (and average) all the items in the list, we only need do the following,
```

$i=0$
sum $=0$
while i < len(grades):

```
 sum \(=\) sum + grades[i]
 \(i=i+1\)
avg \(=\) sum / len(grades)

\section*{"Blackboard Challenge"}

Looking for a volunteer to develop the logic for finding the largest element in a list, without using the sort function.

One extra point on next exam ...```

